Spontaneous facial expression recognition: A robust metric learning approach

نویسندگان

  • Shaohua Wan
  • Jake K. Aggarwal
چکیده

Spontaneous facial expression recognition is significantly more challenging than recognizing posed ones. We focus on two issues that are still under-addressed in this area. First, due to the inherent subtlety, the geometric and appearance features of spontaneous expressions tend to overlap with each other, making it hard for classifiers to find effective separation boundaries. Second, the training set usually contains dubious class labels which can hurt the recognition performance if no countermeasure is taken. In this paper, we propose a spontaneous expression recognition method based on robust metric learning with the aim of alleviating these two problems. In particular, to increase the discrimination of different facial expressions, we learn a new metric space in which spatially close data points have a higher probability of being in the same class. In addition, instead of using the noisy labels directly for metric learning, we define sensitivity and specificity to characterize the annotation reliability of each annotator. Then the distance metric and annotators' reliability is jointly estimated by maximizing the likelihood of the observed class labels. With the introduction of latent variables representing the true class labels, the distance metric and annotators' reliability can be iteratively solved under the Expectation Maximization framework. Comparative experiments show that our method achieves better recognition accuracy on spontaneous expression recognition, and the learned metric can be reliably transferred to recognize posed expressions. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

A Prototype for Automatic Recognition of Spontaneous Facial Actions

We present ongoing work on a project for automatic recognition of spontaneous facial actions. Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Previous methods for automatic facial expression recognition assumed images were collected in controlled environments in which the s...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014